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I. INTRODUCTION 
Gupta et al. (1998) introduced the Exponentiated Exponential Distribution (EE) as a generalization of 

the standard exponential distribution. Gupta and Kundu (2001) Studied this distribution and observed that it can 

be used quite effectively in analyzing many life time data particularly in place of two parameter gamma and 

Weibull distributions. In their series of papers on EE distribution       ( also named as Generalized exponential 

distribution), they discussed different estimation procedures, testing of hypothesis, construction of confidence 

interval, estimating the stress and strength parameter and closeness of generalized exponential with Weibull, 

gamma and lognormal distribution. Shirke et al. (2005) obtained -expectation and -content -level tolerance 

interval for this distribution based on ungrouped data. Many times in a life testing problem, it is not possible to 

record  exact   time of failure of a components due to several reasons. Hence it is more economical to observe no 

of failures of components in predefined time intervals which form grouped data. The main aim of this paper is to 

construct  expectation and  content  level tolerance interval for EE distribution based on grouped data.  

Let U be a statistic based on data observed from a distribution with density function f(x, θ ) where θ  

represents a vector of unknown parameters then the interval (-, U) is a -expectation tolerance interval (TI) if  
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 and interval (-, U) is upper  content  level TI if  
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C is called the coverage of TI (-, U) if  
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One sided TI’s when f(x,) is a two parameter EE distribution based on maximum likelihood 

estimators for ungrouped data were discussed by Shirke et al. (2005). This paper extends the procedure for 

setting TI based on grouped data. In section 2 we provide upper -expectation TI along with its approximate 

expected coverage. -content -level TI based on MLE’s of  are discussed in section 3. We study the 

performance of both these TI using simulation technique in section 4. In section 5 we illustrate the practical 

applications of the procedure by applying it to real life data set. 

 

II. -EXPECTATION TOLERANCE INTERVAL 
Gupta and Kundu (2001) defined EE distribution in the following way. Let Y be a two parameter EE 

random variable with distribution function 
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αyλ )e1()α,λ,y(F    ,,y>0,    (2.1) 

Therefore corresponding probability density function is given by 

         .e)e1(αλ)α,λ,y(f yλ1αyλ    ,y>0   (2.2) 

Suppose Xj , j=1,2,….,k be the number of observations in the interval (tj-1, tj] with t0=0 and tk= such that 
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. Thus we have grouped data from the underlying distribution . 

The log likelihood function for the grouped data can be written as  
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Therefore to obtain MLE of  and , we differentiate L(,) partially w.r.t.  and  and equating it to zero. This 
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It is clear that no closed form solution is possible. We can use Newton-Raphson method to solve above two 

equations. 

The 
th 

percentile of (2.2) is given by  X(θ )=
-1

ln(1-
1/

). Since )α,λ(θ   is unknown, we replace it by its 

MLE )α,λ(θ

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 and we propose approximate upper  expectation TI  as 
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Expected coverage of I1(X) is given by following theorem. 

Theorem 1: An expected coverage of I1(X) is given by 
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Proof : Follows from the result of Atwood (1984). We omit the same for brevity. 

The performance of I1(X) is studied using simulation experiments and has been reported in the Section 4. In the 

following we obtain -content -level TI for the distribution (2.1). 

 

III. -CONTENT -LEVEL TOLERANCE INTERVAL 

Let I2(X) = ( 0,   βX


) be an upper -content -level TI for the distribution having cdf (2.1).  The 

factor  > 0 is to be determined such that I2(X) is a -content -level TI for (0, 1) and  (0, 1). 
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If Z is a standard normal variate then we can write from (3.1)  
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Note that  depends on both the parameters  and . Replacing  and  in  by their respective MLEs an 

asymptotic upper -content -level TI I2(X) is  
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The performance of I2(X) is studied using simulation experiments and has been reported in the Section 5. 

 

IV. SIMULATION STUDY 

The approximate value of the actual coverage of the proposed  expectation TI is given by (2.3). The 

performance of the said TI is illustrated by simulation technique by replacing  and  by its MLE’s λ̂  and α̂ . 

In the simulation study of I1(X), we generate n (=10, 25, 50, 75, 100) observations from EE distribution with 

=2 , =2 and groupe into five equal spaced intervals as 0- 0.5, 0.5- 1.0, 1.0- 1.5, 1.5- 2.0 and above 2.0. MLE’s 

of  and  are otained and are used to compute upper - expectation TI of I1(X) for =.90, .95, .975 and .99. 

Repeating the above  procedure 10,000 times and estimate expected coverage reported in Table 4.1. Same 
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procedure is repeated by grouping observations into five unequal spaced intervals as 0- 0.4, 0.4- 0.9, 0.9- 1.5, 

1.5- 2.2 and above 2.2. The expected coverage reported in Table 4.2. We observe from Table 4.1 and 4.2 that for 

small sample size TI underestimates expected coverage while as sample size increases coverage converges to 

the desired level. It verifies the consistency property of the proposed interval. 

 

Table 4.1: Expected coverage of - expectation TI  (equally spaced) 

 

 

n 

10 25 50 75 100 

0.90 .8518 .8794 .8854 .8934 .8982 

0.95 .9042 .9422 .9456 .9470 .9482 

0.975 .9330 .9650 .9687 .9728 .9766 

0.99 .9520 .9802 .9842 .9864 .9880 

 

Table 4.2: Expected coverage of - expectation TI  (unequally spaced) 

 

 

n 

10 25 50 75 100 

0.90 .8594 .8874 .8923 .8970 .8990 

0.95 .9146 .9328 .9384 .9428 .9500 

0.975 .9386 .9660 .9821 .9740 .9762 

0.99 .9596 .9826 .9856 .9890 .9900 

 

Upper -content -level TI given in (3.2) require asymptotic variance covariance matrix of the MLE’s 

λ̂  and α̂  which involve complicated integrals to be solved numerically. This problem is resolved by using 

bootstrap technique. In the following section we illustrate an application of the procedure by applying it to real 

life data set. 

 

V. APPLICATION 
Lawless data set (1982, page 228) is best fitted to EE distribution than two parameter Weibull and 

Gamma as reported by Gupta and Kundu (2001).The data are regarding arose in test on endurance of deep 

groove ball bearings. The data are the class of  number of million resolutions before failure for  23 ball bearings 

in the life test with equally spaced intervals as 

Class interval  : 0-35    35-70    70-105 105-140    140- 

No of ball bearings :   3      12          3            4             1  

For equally spaced data MLE’s of  and  are 0.0326 and 4.9536 respectively and upper  expectation 

tolerance limits (say U1(X)) for various ’s are 

      : 0.90  0.95  0.975  0.99 

U1(X) : 118.4462     140.3613 161.9405 190.2356 

If the above data are with unequally spaced intervals as, 

Class interval  : 0-35    35-55    55-80 80-100    100- 

No of ball bearings :   3      7          5            3             5  

MLE’s of  and  are 0.0302 and 4.4747 respectively and upper  expectation tolerance limits (say 

U2(X))  for various ’s are 

       : 0.90  0.95  0.975  0.99 

U2(X)  : 124.6725     148.3370 171.6484 202.2216 

Using bootstrap technique we generate 5000 random samples (with replacement) each of size 23 from 

the original data and group them with intervals equally spaced . For each of the bootstrap sample we compute 

MLE’s of  and . Based on such 5000 MLE’s we obtain variance covariance matrix of MLE’s and is used to 

propose asymptotic upper  content  level tolerance limit (TL) with combinations of =.90, .95, .975,.99  and 

= .90, .95 and tabulated in Table 5.1. We also generate 5000 random bootstrap samples (with replacement) 

each of size 23 from the original data and group them with intervals unequally spaced. By repeating the same  

procedure as above ,we propose asymptotic upper -content -level tolerance limit and reported in Table 5.2. 

 

Table 5.1: Upper -Content -level TL (equally spaced) 

 

 

 

(θ ) 

=.90 =.95 

 U(X)  U(X) 
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0.90 20.0795 1.0475 124.0667 1.0615 125.7353 

0.95 23.5777 1.0470 146.9582 1.0609 148.9154 

0.975 27.8883 1.0482 169.7526 1.0626 172.0740 

0.99 34.3264 1.0507 199.8735 1.0658 202.7460 

 

Table 5.2: Upper -Content -level TL (unequally spaced) 

 

 

 

(θ ) 

=.90 =.95 

 U(X)  U(X) 

0.90 20.9688 1.0471 130.5397 1.0610 132.2806 

0.95 26.4637 1.0501 155.7630 1.0650 157.9746 

0.975 32.4806 1.0533 180.7905 1.0692 183.5240 

0.99 40.8536 1.0571 213.7621 1.0742 217.2288 

 

It is observed that -content -level TI for equally spaced intervals has a wider length as against the 

unequally spaced intervals. 

The simulation study indicates that for small sample size TI underestimates expected coverage while as 

sample size increases coverage converges to desired level. The performance of both the proposed TI’s are 

satisfactory and can be used in practice. The method developed here can be extended for distributions belongs to 

exponentiated scale family of distributions such as exponentiated Weibull, Exponentiated gamma or 

Exponentiated Rayleigh distribution. 
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